2011 Air Quality Progress Report for MIDDLESBROUGH

In fulfillment of Part IV of the Environment Act 1995
Local Air Quality Management

June 2011
<table>
<thead>
<tr>
<th>Local Authority Officer</th>
<th>Paul MacGregor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Department</td>
<td>Public Protection</td>
</tr>
</tbody>
</table>
| **Address** | PO Box 65, Vancouver House
 | Gurney Street
 | Middlesbrough, TS1 1QP |
| **Telephone** | 01642 728240 |
| **e-mail** | paul_macgregor@middlesbrough.gov.uk |
| **Report Reference number** | MPR11 |
| **Date** | June 2011 |
Executive Summary

This report is the tenth in the series of Air Quality Review and Assessments carried out in the Middlesbrough Council area under the Environment Act 1995.

The first Review and Assessment of Air Quality 2000, was submitted to Government in December 2000, and was based on a comprehensive review of pollutant emission and monitoring data between 1996 and 1999. The report concluded that air quality in Middlesbrough judged against Government objectives, was good, and there was no need to declare any Air Quality Management Areas; a fact supported by national government.

The second Review and Assessment of Air Quality, an Updating and Screening report, was submitted to Government in May 2003. The report concluded that air quality in Middlesbrough would meet Government objectives by the due date, and there was no need to declare any Air Quality Management Areas.

For 2004 and 2005, Progress reports were submitted to Government, updating monitoring data and trends, and recording significant developments and changes to pollutant emissions.

The fifth Review and Assessment of Air Quality, an Updating and Screening report, was submitted to Government in May 2006. The report concluded that air quality in Middlesbrough would meet Government objectives by the due date, and there was no need to declare any Air Quality Management Areas.

For 2007 and 2008, Progress reports were submitted to Government, updating monitoring data and trends, and recording significant developments and changes to pollutant emissions.

The eighth Review and Assessment of Air Quality, an Updating and Screening report, was submitted to Government in May 2009. The report concluded that air quality in Middlesbrough would meet Government objectives by the due date, and there was no need to declare any Air Quality Management Areas. This report was the first submitted under the new web-based reporting system.

For 2010, a Progress report was submitted to Government, updating monitoring data and trends, and recording significant developments and changes to pollutant emissions.

All reports submitted have been accepted in full by the national government.

This report for 2011 is a Progress report updating monitoring data for 2010, historical trends, and recording significant developments and changes to pollutant emissions.

Government objectives for air quality currently cover seven pollutants:

- Nitrogen dioxide
- Particulate PM10
- Sulphur dioxide
- Carbon monoxide
- Benzene
- 1,3-butadiene
- Lead
The main sources of these pollutants are domestic / commercial heating emissions, road traffic fuel and exhaust emissions, and industrial combustion and process emissions, with some pollution imported, dependant on weather conditions.

Within Middlesbrough, domestic / commercial heating is largely fuelled by natural gas, which gives low levels of emissions compared with other carbon based fuels. There is 1 part A industrial process within the Council area, with low emissions, but there are many more large industrial processes in the neighbouring Tees Valley Council areas. This is no significant change from the earlier reviews, and they can from time to time impact on ground level pollutant concentrations. Overall, however, it is road traffic fuel and exhaust emissions that remain the largest source of air pollution at ground level.

While, in general, improved fuels, engines and exhaust systems are reducing road traffic emissions, traffic volume increases and the low point of discharge is still giving rise to high kerbside concentrations of nitrogen dioxide and particulate PM10. This is particularly so where there are very heavily congested roads with tall buildings creating a ‘canyon’ effect and limiting dispersal, such as can be found in older city centres. Middlesbrough does not have roads of this type, even in the central area of Middlesbrough. The main shopping area is extensively pedestrianised, and while the busy main A66 east – west route acts as the main through-route and feeder to the town centre, there are no potential areas of relevant public exposure in its immediate vicinity. The north – south A19 trunk road passes to the west of Middlesbrough, but is well away from public exposure areas.

Continuous monitoring carried out within Middlesbrough has shown that there is no exceedance of government objectives from traffic or from industry. Further support is provided by the results from continuous monitoring carried out elsewhere in the Tees Valley area.

Further evidence of the generally good quality of air in the Tees Valley is found in reference 3, a five year analysis 2004 – 2008 of all continuous monitoring results against the UK Air Quality Banding system, published in January 2010. This system looks at potential health risks associated with short-term exposure to nitrogen dioxide, particulate PM10, sulphur dioxide, carbon monoxide and ozone, and concludes that on this measure of air quality, Middlesbrough air quality is better than the national average.

In 2005, a comprehensive traffic pollution study (reference 4) was carried out across the Tees Valley using the Highways Agency model. Within Middlesbrough the study looked at a continuous monitoring site, and building façades close to busy roads. The study showed that the model provided a good representation of traffic pollution, and confirmed that there were no exceedances of Government objectives.

It is concluded that all Government objectives will be met by the due date within the Middlesbrough Council area, and there is no need to declare any Air Quality Management areas.

The next report will be an Updating and Screening report in 2012, followed by Progress reports in 2013 and 2014.
Table of contents

1 Introduction 1
 1.1 Description of Local Authority Area 1
 1.2 Purpose of Report 2
 1.3 Air Quality Objectives 3
 1.4 Summary of Previous Review and Assessments 4

2 New Monitoring Data 6
 2.1 Summary of Monitoring Undertaken 6
 2.2 Comparison of Monitoring Results with Air Quality Objectives 8

3 New Local Developments 15
 3.1 Road Traffic Sources 15
 3.2 Other Transport Sources 15
 3.3 Industrial Sources 15
 3.4 Commercial and Domestic Sources 15
 3.5 New Developments with Fugitive or Uncontrolled Sources 15

4 Local / Regional Air Quality Strategy 16

5 Planning Applications 16

6 Air Quality Planning Policies 16

7 Local Transport Plans / Strategies 16

8 Climate Change Strategies 16

9 Implementation of Action Plans 16

10 Conclusions and Proposed Actions 17
 10.1 Conclusions from new monitoring data 17
 10.2 Conclusions from new assessment of sources 17
 10.3 Other conclusions 17
 10.4 Proposed actions

11 References 18

Appendices 19
 Appendix A QA / QC 19
 Appendix B Monitoring Trend Graphs 21
1 Introduction

1.1 Description of Local Authority Area

Middlesbrough Council is one of five unitary Councils forming the general area known as the Tees Valley. As shown below, it is central, but has the smallest area, at 53.9 sq km.

Middlesbrough is the most densely populated of the five Councils, with little in the way of rural area. It has well-developed retail areas in the town centre, with new commercial expansion planned for the Middlehaven development in the old port area of the Tees. Rail traffic is relatively light, with diesel-operated local services to Darlington, Newcastle, and York, and some through freight traffic from industrial areas to the East. There is no significant port traffic.

One IPPC industrial process lies in a small chemical complex within the Council area, but many larger processes are located in neighbouring Tees Valley Councils to the East and North. These impact from time to time on Middlesbrough air quality, but are not on prevailing wind directions.

The main A19 trunk road runs north – south to the West of the Borough, but this, and its feeder A174 east – west trunk route from the East, run through wide landscaped transport corridors, with no target groups in the vicinity. The main A66 east – west trunk route runs to the North of the town centre, but again is within its own transport corridor. Middlesbrough has the first two Tees crossings from the estuary, and has substantial through traffic from the east and west. It is also a significant commercial centre within the region, with substantial commuter traffic into the centre.

The majority of the Middlesbrough area is subject to Smoke Control Orders, and natural gas is the main source of heating. This means that air pollution from domestic and commercial sources is low. Industrial emissions within Middlesbrough are also low, leaving road transport as the most significant air pollution source.
Middlesbrough - England

The Tees Valley Environmental Protection Group (TVEPG) is a joint committee of the five Tees Valley Councils, which looks at a range of environmental issues of mutual concern. Air pollution matters are an important part of the work of the Group, drawing together a better understanding of the sources of pollutants, and their impact across the Tees Valley.

There is a wide range of air pollution monitoring carried out between the five Councils. This data is collated and published annually (reference 1), and forms a key part of review and assessment for each of the Councils. The annual report is attached as section B of this Progress Report.

Middlesbrough is a large urban area. In addition to commuter traffic, it has the first road crossings of the Tees, with substantial through traffic. There are significant areas of light industry and commerce, but little or no heavy industry within its area.

Air quality in Middlesbrough is therefore a measure of emissions from domestic, light industry and road traffic sources, and provides an indication of emissions from the large industrial complexes in neighbouring Council areas to the north and east.

1.2 Purpose of Report

Progress Reports are required in the intervening years between the three-yearly Updating and Screening Assessment reports. Their purpose is to maintain continuity in the Local Air Quality Management process.

They are not intended to be as detailed as Updating and Screening Assessment Reports, or to require as much effort. However, if the Progress Report identifies the risk of exceedence of an Air Quality Objective, the Local Authority (LA) should undertake a Detailed Assessment immediately, and not wait until the next round of Review and Assessment.

1.3 Air Quality Objectives

The air quality objectives applicable to LAQM in England are set out in the Air Quality (England) Regulations 2000 (SI 928), The Air Quality (England) (Amendment) Regulations 2002 (SI 3043), and are shown in Table 1.1 overleaf. This table shows the objectives in units of microgrammes per cubic metre $\mu g/m^3$ (milligrammes per cubic metre, mg/m^3 for carbon monoxide) with the number of exceedences in each year that are permitted (where applicable).

Table 1.2 overleaf sets out, for information, the unregulated air quality pollutants that are part of the UK National Air Quality Strategy. Information regarding these pollutants is included in this report.
Table 1.1 Air Quality Objectives included in Regulations for the purpose of Local Air Quality Management in England.

<table>
<thead>
<tr>
<th>Pollutant</th>
<th>Air Quality Objective</th>
<th>Measured as</th>
<th>Date to be achieved by</th>
</tr>
</thead>
<tbody>
<tr>
<td>Benzene</td>
<td>16.25 µg/m³ Running annual mean</td>
<td></td>
<td>31.12.2003</td>
</tr>
<tr>
<td></td>
<td>5.00 µg/m³ Running annual mean</td>
<td></td>
<td>31.12.2010</td>
</tr>
<tr>
<td>1,3-Butadiene</td>
<td>2.25 µg/m³ Running annual mean</td>
<td></td>
<td>31.12.2003</td>
</tr>
<tr>
<td>Carbon monoxide</td>
<td>10.0 mg/m³ Running 8-hour mean</td>
<td></td>
<td>31.12.2003</td>
</tr>
<tr>
<td>Lead</td>
<td>0.5 µg/m³ Annual mean</td>
<td></td>
<td>31.12.2004</td>
</tr>
<tr>
<td></td>
<td>0.25 µg/m³ Annual mean</td>
<td></td>
<td>31.12.2008</td>
</tr>
<tr>
<td>Nitrogen dioxide</td>
<td>200 µg/m³ not to be exceeded more than 18 times a year</td>
<td>1-hour mean</td>
<td>31.12.2005</td>
</tr>
<tr>
<td></td>
<td>40 µg/m³ Annual mean</td>
<td></td>
<td>31.12.2005</td>
</tr>
<tr>
<td>Particles (PM₁₀)</td>
<td>50 µg/m³, not to be exceeded more than 35 times a year</td>
<td>24-hour mean</td>
<td>31.12.2004</td>
</tr>
<tr>
<td>(gravimetric)</td>
<td>40 µg/m³ Annual mean</td>
<td></td>
<td>31.12.2004</td>
</tr>
<tr>
<td>Sulphur dioxide</td>
<td>350 µg/m³, not to be exceeded more than 24 times a year</td>
<td>1-hour mean</td>
<td>31.12.2004</td>
</tr>
<tr>
<td></td>
<td>125 µg/m³, not to be exceeded more than 3 times a year</td>
<td>24-hour mean</td>
<td>31.12.2004</td>
</tr>
<tr>
<td></td>
<td>266 µg/m³, not to be exceeded more than 35 times a year</td>
<td>15-minute mean</td>
<td>31.12.2005</td>
</tr>
</tbody>
</table>

Table 1.2 Air Quality Objectives not included in Regulations for the purpose of Local Air Quality Management in England.

<table>
<thead>
<tr>
<th>Pollutant</th>
<th>Air Quality Objective</th>
<th>Measured as</th>
<th>Date to be achieved by</th>
</tr>
</thead>
<tbody>
<tr>
<td>Particles (PM₂.₅)</td>
<td>25 µg/m³ (target 15% reduction 2010 – 2020)</td>
<td>Annual mean</td>
<td>31.12.2020</td>
</tr>
<tr>
<td>Polycyclic Aromatic Hydrocarbons (PAHs)</td>
<td>0.25 ng/m³</td>
<td>Annual mean</td>
<td>31.12.2010</td>
</tr>
<tr>
<td>Ozone</td>
<td>100 µg/m³</td>
<td>Running 8-hour mean</td>
<td>31.12.2005</td>
</tr>
</tbody>
</table>
1.4 Summary of Previous Review and Assessments

REVIEW and ASSESSMENT SUBMISSIONS

These are published on the Middlesbrough Council web site under Middlesbrough air quality. All submissions have been approved by Defra. No Air Quality Management Areas have been declared.

2000 Review and Assessment
Stage 1 of the first Review and Assessment was a joint report published by the TVEPG in December 1998. A more detailed 2nd / 3rd stage Review and Assessment, which included work from consultants commissioned to undertake advanced air quality modelling (AAQuIRE 2000), was published by Middlesbrough Council in December 2000. This confirmed that road traffic was the main source of air pollution at ground level in the form of nitrogen dioxide and particulate PM10, but that there was no need to declare any Air Quality Management Areas.

The report was accepted in full by the Department for Environment, Food and Rural Affairs (DEFRA).

2003 Updating and Screening Report
Middlesbrough Council published this report in May 2003. There was no significant change to domestic, commercial or industrial sources within, or close to Middlesbrough area. Road traffic flows were updated and compared with the 2000 Review and Assessment, with no areas identified of particular concern.

The report was accepted in full by the Department for Environment, Food and Rural Affairs (DEFRA).

2004 Progress Report
This report was a joint report published by the TVEPG in April 2004. The report updated monitoring results across the Tees Valley, showed pollution trends, and recorded any significant developments that may affect air quality.

The report was accepted in full by the Department for Environment, Food and Rural Affairs (DEFRA).

2005 Progress Report
This report was a joint report published by the TVEPG in April 2005. The report updated monitoring results across the Tees Valley, showed pollution trends, and recorded any significant developments that may affect air quality.

The report was accepted in full by the Department for Environment, Food and Rural Affairs (DEFRA).
Middlesbrough - England

2006 Updating and Screening Report
Middlesbrough Council published this report in May 2006. There was no significant change to domestic, commercial or industrial sources within, or close to Middlesbrough. Road traffic flows were updated and compared with the 2003 Updating and Screening Report, with no areas identified of particular concern.

An attachment to the above report was a traffic pollution study carried out in 2005, and published as a joint Council report in July 2005. The report tested the DMRB roadside air quality model against roadside continuous monitors for NO2 and PM10; and used the model to check building façade locations nearest to busy roads.

The study concluded that the model showed good agreement against the continuous monitors, and provided a useful method for looking at traffic related issues.

The report was accepted in full by the Department for Environment, Food and Rural Affairs (DEFRA).

2007 Progress Report
This report was a joint report published by the TVEPG in April 2007. The report updated monitoring results across the Tees Valley, showed pollution trends, and recorded any significant developments that may affect air quality.

The report was accepted in full by the Department for Environment, Food and Rural Affairs (DEFRA).

2008 Progress Report
This report was a joint report published by the TVEPG in April 2008. The report updated monitoring results across the Tees Valley, showed pollution trends, and recorded any significant developments that may affect air quality.

The report was accepted in full by the Department for Environment, Food and Rural Affairs (DEFRA).

2009 Updating and Screening Report
Middlesbrough Council published this report in May 2009 using the new reporting template. There was no significant change to domestic, commercial or industrial sources within, or close to Middlesbrough. Road traffic flows showed no significant change compared with the 2006 Updating and Screening Report, with no areas identified of particular concern.

The report was accepted in full by the Department for Environment, Food and Rural Affairs (DEFRA).

2010 Progress Report
Middlesbrough Council published this report in May 2010 using the new reporting template. The report updated monitoring results across Middlesbrough Council area, showed pollution trends, and recorded any significant developments that may affect air quality.

The report was accepted in full by the Department for Environment, Food and Rural Affairs (DEFRA).
2 New Monitoring Data

2.1 Summary of Monitoring Undertaken

2.1.1 Automatic Monitoring Sites

Table 2.1 Details of Automatic Monitoring Sites

<table>
<thead>
<tr>
<th>Site Name</th>
<th>Site Type</th>
<th>OS Grid Ref</th>
<th>Pollutants Monitored</th>
<th>In AQMA?</th>
<th>Relevant Exposure? (Y/N with distance (m) to relevant exposure)</th>
<th>Distance to kerb of nearest road (N/A if not applicable)</th>
<th>Worst-case Location?</th>
</tr>
</thead>
<tbody>
<tr>
<td>Breckon Hill</td>
<td>Urban industrial</td>
<td>E - 450500 N - 519400</td>
<td>NO₂, PM₁₀, PM₂.₅, SO₂, CO, O₃</td>
<td>N</td>
<td>Y (1m)</td>
<td>20 metres</td>
<td>Y</td>
</tr>
<tr>
<td>MacMillan College</td>
<td>Urban background</td>
<td>E - 447800 N - 519300</td>
<td>NO₂, PM₁₀</td>
<td>N</td>
<td>Y (1m)</td>
<td>230 metres to A19 trunk route</td>
<td>Y</td>
</tr>
<tr>
<td>Elm Street</td>
<td>Urban</td>
<td>E - 449700 N - 520300</td>
<td>NO₂, PM₁₀</td>
<td>N</td>
<td>Y (for 1hr NO₂) (1m)</td>
<td>15 metres</td>
<td>Y</td>
</tr>
</tbody>
</table>

Breckon Hill has been part of the AURN network since 1993 as an affiliated site. Local authority staff carry out regular calibrations, with details passed to the network operator (AEAT), who carry out QA / QC. A maintenance contract with the instrument supplier covers six-monthly inspections. Late in Q4 2008, the unmodified PM₁₀ TEOM was replaced with a PM₁₀ FDMS TEOM, and a PM₂.₅ FDMS TEOM added. The results shown below for particulate PM₁₀ and PM₂.₅ are FDMS TEOM for 2009 / 10. The unmodified PM₁₀ TEOM results for 2008 (part year) have been adjusted to gravimetric equivalence using Government guidance factor of 1.3. The vcm method was not relevant for 2008.

The AURN monitoring station is in school grounds within a residential area surrounded by busy commuter routes. It is a key public exposure location for all pollutants, and lies on a north-easterly wind direction (frequency around 15% pa) from the main chemical and steel industrial areas along the River Tees estuary.

MacMillan College is a local station owned and operated by Middlesbrough Council since year 2000. Local authority staff carry out regular calibrations. A maintenance contract with the instrument supplier covers six-monthly inspections. The unmodified TEOM is not being upgraded, but all of the PM₁₀ results shown have been adjusted to gravimetric equivalence using the vcm method. The monitoring station is in school grounds surrounded at distance by very busy trunk road routes, and is an important public exposure location for the transport corridor, and for all objectives.

Elm Street is a local station owned and operated by Middlesbrough Council since 2003. Local authority staff carry out regular calibrations. A maintenance contract with the instrument supplier
covers six-monthly inspections. The unmodified TEOM is not being upgraded, but all of the PM$_{10}$ results shown below have been adjusted to gravimetric equivalence using the vcm method. The monitoring station lies just off a busy town centre access road, and provides a measure of pollution trends from vehicles, which is used in the transport plan. The unit is a public exposure location for the 1 hour nitrogen dioxide objective.

The locations of the three monitoring sites are shown on the map below

MIDDLESBROUGH COUNCIL AREA
showing locations of the three automatic monitoring stations
2.1.2 Non-Automatic Monitoring

Table 2.2 Details of Non-Automatic Monitoring Sites

<table>
<thead>
<tr>
<th>Site Name</th>
<th>Site Type</th>
<th>OS Grid Ref</th>
<th>Pollutants Monitored</th>
<th>In AQMA?</th>
<th>Relevant Exposure? (Y/N with distance (m) to relevant exposure)</th>
<th>Distance to kerb of nearest road (N/A if not applicable)</th>
<th>Worst-case Location?</th>
</tr>
</thead>
<tbody>
<tr>
<td>Breckon Hill (AURN)</td>
<td>Urban industrial</td>
<td>N - 450500 E - 519400</td>
<td>Benzene</td>
<td>N</td>
<td>Y (1m)</td>
<td>20 metres</td>
<td>Y</td>
</tr>
<tr>
<td>Breckon Hill (AURN)</td>
<td>Urban industrial</td>
<td>N - 450500 E - 519400</td>
<td>PAH</td>
<td>N</td>
<td>Y (1m)</td>
<td>20 metres</td>
<td>Y</td>
</tr>
</tbody>
</table>

Middlesbrough does not use nitrogen dioxide diffusion tubes, preferring automatic monitoring at key locations.

The Benzene monitor is a pumped diffusion tube, and part of the national network since 2002. Tubes are replaced by Middlesbrough Council staff at agreed times. QA / QC is carried out by the national network operators (NPL).

It is a key public exposure location for Benzene, and lies on a north-easterly wind direction (frequency around 15% pa) from the main chemical and steel industrial areas along the river Tees estuary.

The PAH monitor is a digital unit, part of the national network, and started operation in Q4 2007, when it replaced the TOMPS network monitor installed close by at an elevated non-public exposure location. QA / QC is carried out by the national network operators (AEAT).

It is a key public exposure location for PAH, and lies on a north-easterly wind direction (frequency around 15% pa) from the main chemical and steel industrial areas along the River Tees estuary. PAH is not yet a regulated pollutant, but results for the digital sampler for 2008 and 2009 are included in this report.

1,3-Butadiene was monitored using a diffusion as part of the national network from 2003 to 2007, when the monitor was closed following national network rationalisation. It was a key public exposure location for 1,3-butadiene, and lay on a north-easterly wind direction (frequency around 15% pa) from the main chemical and steel industrial areas along the river Tees estuary.

2.2 Comparison of Monitoring Results with AQ Objectives

The following sections record Middlesbrough monitoring data over the last three years, and compare them with the relevant AQ objectives. With regard to regulated pollutants, monitored levels are well within the objective level, with no borderline cases. Trend graphs covering the operating periods of the monitoring stations are shown in appendix B of this report, but show no discernable trend, with small variations each year mainly reflecting weather conditions. As most ground level pollution within
Middlesbrough is from road transport, any improvements in emission levels seem to have been largely offset by traffic flow increases. Reference 1 of this report includes results from other monitoring stations in the neighbouring Council areas of the Tees Valley. In every case, a similar picture to that in Middlesbrough is shown, with monitored levels relatively stable, within the objective levels, and no discernable trend.

2.2.1 Nitrogen Dioxide

Automatic Monitoring Data

Table 2.3a Results of Automatic Monitoring for Nitrogen Dioxide: Comparison with Annual Mean Objective of 40 μg/m3, with no exceedances.

<table>
<thead>
<tr>
<th>Site ID</th>
<th>Location</th>
<th>Within AQMA?</th>
<th>Data Capture 2010 %</th>
<th>Annual mean concentrations (μg/m3)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2008</td>
</tr>
<tr>
<td>BH</td>
<td>Breckon Hill</td>
<td>N</td>
<td>97</td>
<td>21.1</td>
</tr>
<tr>
<td>Mac</td>
<td>MacMillan College</td>
<td>N</td>
<td>99</td>
<td>25.1</td>
</tr>
<tr>
<td>Elm</td>
<td>Elm Street</td>
<td>N</td>
<td>97</td>
<td>27.2</td>
</tr>
</tbody>
</table>

All three stations show annual means well within the objective level. Breckon Hill and MacMillan monitoring stations are representative of relevant public exposure. Variations from year to year tend to reflect weather conditions, with 2010 results elevated by the cold weather in November and December. Annual mean trends are shown in appendix B of this report.

Table 2.3b Results of Automatic Monitoring for Nitrogen Dioxide: Comparison with 1-hour Mean Objective of 200 μg/m3, with a maximum of 18 exceedances per year.

<table>
<thead>
<tr>
<th>Site ID</th>
<th>Location</th>
<th>Within AQMA?</th>
<th>Data Capture 2010 %</th>
<th>Number of Exceedances of hourly mean (200 μg/m3)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>The 99.8th %ile of hourly means is in brackets.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2008</td>
</tr>
<tr>
<td>BH</td>
<td>Breckon Hill</td>
<td>N</td>
<td>97</td>
<td>0 (90)</td>
</tr>
<tr>
<td>Mac</td>
<td>MacMillan College</td>
<td>N</td>
<td>99</td>
<td>0 (87)</td>
</tr>
<tr>
<td>Elm</td>
<td>Elm Street</td>
<td>N</td>
<td>97</td>
<td>0 (89)</td>
</tr>
</tbody>
</table>

There have been no exceedances recorded at any of the three monitoring stations, which are all representative of relevant public exposure. The 99.8th percentile of hourly means is recorded for information, and show levels less than half of the objective level. The much higher percentiles for 2010 reflect the cold weather conditions in November and December. The 99.8th percentiles of 1-hour mean trends are shown in appendix B of this report.
2.2.2 Diffusion Tube Monitoring Data

There are no nitrogen dioxide diffusion tubes in Middlesbrough.

2.2.3 PM$_{10}$

Table 2.4a Results of PM$_{10}$ Automatic Monitoring: Comparison with Annual Mean Objective of 40 μg/m3 (gravimetric), with no exceedances.

<table>
<thead>
<tr>
<th>Site ID</th>
<th>Location</th>
<th>Within AQMA?</th>
<th>Data Capture 2010 %</th>
<th>Annual mean concentrations (μg/m3)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2008</td>
</tr>
<tr>
<td>BH</td>
<td>Breckon Hill</td>
<td>N</td>
<td>75</td>
<td>21</td>
</tr>
<tr>
<td>Mac</td>
<td>MacMillan College</td>
<td>N</td>
<td>99</td>
<td>21</td>
</tr>
<tr>
<td>Elm</td>
<td>Elm Street</td>
<td>N</td>
<td>93</td>
<td>22</td>
</tr>
</tbody>
</table>

Note: annual mean concentrations shown are adjusted to gravimetric equivalence using vcm.

All three stations show annual means well within the objective level. Breckon Hill and MacMillan monitoring stations are representative of relevant public exposure. The small variations from year to year reflect weather conditions. Annual mean trends are shown in appendix B of this report.

Table 2.4b Results of PM$_{10}$ Automatic Monitoring: Comparison with 24-hour Mean Objective of 50 μg/m3 gravimetric, with a maximum of 35 exceedances per year.

<table>
<thead>
<tr>
<th>Site ID</th>
<th>Location</th>
<th>Within AQMA?</th>
<th>Data Capture 2010 %</th>
<th>Number of Exceedances of daily mean objective (50 μg/m3)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>The 90th %ile of daily means in brackets.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2008</td>
</tr>
<tr>
<td>BH</td>
<td>Breckon Hill</td>
<td>N</td>
<td>75</td>
<td>13 (36)</td>
</tr>
<tr>
<td>Mac</td>
<td>MacMillan College</td>
<td>N</td>
<td>99</td>
<td>12 (34)</td>
</tr>
<tr>
<td>Elm</td>
<td>Elm Street</td>
<td>N</td>
<td>93</td>
<td>15 (35)</td>
</tr>
</tbody>
</table>

There are rare exceedances of the objective at all three monitoring stations, but the number of exceedances is well below the objective maximum. The 90th percentile of 24 hour means is recorded for information, with levels comfortably within the objective level. Breckon Hill and MacMillan monitoring stations are representative of relevant public exposure. Variations from year to year reflect weather conditions, in particular particle build-up during high-pressure weather episodes. Annual exceedance trends are shown in appendix B of this report.
2.2.4 **PM$_{2.5}$** (an unregulated pollutant)

Table 2.5a Results of PM$_{2.5}$ Automatic Monitoring: Comparison with Annual Mean Objective of 20 µg/m3 (gravimetric).

<table>
<thead>
<tr>
<th>Site ID</th>
<th>Location</th>
<th>Within AQMA?</th>
<th>Data Capture 2010 %</th>
<th>Annual mean concentrations (µg/m3)</th>
<th>2008</th>
<th>2009</th>
<th>2010</th>
</tr>
</thead>
<tbody>
<tr>
<td>BH</td>
<td>Breckon Hill (FDMS)</td>
<td>N</td>
<td>70</td>
<td>Annual mean concentrations (µg/m3)</td>
<td>-</td>
<td>10.3</td>
<td>9.5</td>
</tr>
</tbody>
</table>

Note: During Q4 2008, the Breckon Hill AURN station was upgraded to include a FDMS TEOM particulate PM$_{2.5}$ monitor alongside the new FDMS TEOM PM$_{10}$ monitor.

The Breckon Hill site is representative of public exposure, and became fully operational in January 2009, using FDMS TEOM technology. Annual mean concentrations are well within the objective level. There is insufficient data for a trend graph in appendix B of this report.

For 2010, particulate PM$_{2.5}$ was 62% of the particulate PM$_{10}$ fraction.

2.2.5 **Sulphur Dioxide**

Overview: Results below show that the three sulphur dioxide objectives are easily met.

Table 2.6a Results of SO$_2$ Automatic Monitoring: Comparison with 15-minute Mean Objective of 266 µg/m3, with a maximum of 35 exceedances per year.

<table>
<thead>
<tr>
<th>Site ID</th>
<th>Location</th>
<th>Within AQMA?</th>
<th>Data Capture 2010 %</th>
<th>Number of Exceedances of 15 minute mean objective (266 µg/m3)</th>
<th>2008</th>
<th>2009</th>
<th>2010</th>
</tr>
</thead>
<tbody>
<tr>
<td>BH</td>
<td>Breckon Hill</td>
<td>N</td>
<td>96</td>
<td>The 99.9th %ile of daily means in brackets.</td>
<td>1 (81)</td>
<td>0 (81)</td>
<td>0 (89)</td>
</tr>
</tbody>
</table>

The 15 minute objective is the more difficult of the 3 sulphur dioxide objectives, but is easily met within Middlesbrough, with only a very occasional exceedance. Most sulphur dioxide emissions come from outside of the area, either from the major chemical and steel industries along the river Tees estuary, or occasionally from the large power stations well to the South. Breckon Hill is representative of relevant public exposure, but has 99.9th percentiles less than one third of the objective level. There are indications of a continuing downward trend in concentrations (appendix B to this report). The Environment Agency reports a 30% decline in sulphur dioxide emissions from Tees Valley industry over the last 5 years (reference 2).
Middlesbrough - England

Table 2.6b Results of SO₂ Automatic Monitoring: Comparison with 1-hour Mean Objective of 350 μg/m³, with a maximum of 24 exceedances per year.

<table>
<thead>
<tr>
<th>Site ID</th>
<th>Location</th>
<th>Within AQMA?</th>
<th>Data Capture 2010 %</th>
<th>Number of Exceedances of 1 hour mean objective (350 μg/m³)</th>
</tr>
</thead>
<tbody>
<tr>
<td>BH</td>
<td>Breckon Hill</td>
<td>N</td>
<td>97</td>
<td>0 (59) 0 (53) 0 (45)</td>
</tr>
</tbody>
</table>

Breckon Hill is representative of relevant public exposure and has never had an exceedance of this objective. There are indications of a continuing downward trend in concentrations.

Table 2.6c Results of SO₂ Automatic Monitoring: Comparison with 24-hour Mean Objective of 125 μg/m³, with a maximum of 3 exceedances per year.

<table>
<thead>
<tr>
<th>Site ID</th>
<th>Location</th>
<th>Within AQMA?</th>
<th>Data Capture 2010 %</th>
<th>Number of Exceedances of 24 hour mean objective (125 μg/m³)</th>
</tr>
</thead>
<tbody>
<tr>
<td>BH</td>
<td>Breckon Hill</td>
<td>N</td>
<td>98</td>
<td>0 (23) 0 (17) 0 (13)</td>
</tr>
</tbody>
</table>

Breckon Hill is representative of relevant public exposure and has never had an exceedance of this objective.

2.2.6 Benzene and 1,3- butadiene

Table 2.7 Results of Benzene Pumped Diffusion Tube Monitoring: Comparison with Annual Mean Objectives of 16.25 and 5.00 μg/m³, with no exceedances.

<table>
<thead>
<tr>
<th>Site ID</th>
<th>Location</th>
<th>Within AQMA?</th>
<th>Data Capture 2010 %</th>
<th>Annual mean concentrations (μg/m³)</th>
</tr>
</thead>
<tbody>
<tr>
<td>BH</td>
<td>Breckon Hill</td>
<td>N</td>
<td>90</td>
<td>1.15 0.98 1.21</td>
</tr>
</tbody>
</table>

Breckon Hill is representative of relevant public exposure for Benzene. Results show that the two objectives are readily met and show a downward trend that reflects reduced benzene emissions from industrial sources along the River Tees estuary, as reported by the Environment Agency (reference 2).
Table 2.8 Results of 1,3-butadiene Diffusion Tube Monitoring: Comparison with Annual Mean Objective of 2.25 μg/m³, with no exceedances. (historical data only)

<table>
<thead>
<tr>
<th>Site ID</th>
<th>Location</th>
<th>Within AQMA?</th>
<th>Data Capture 2010 %</th>
<th>Annual mean concentrations (μg/m³)</th>
</tr>
</thead>
<tbody>
<tr>
<td>BH</td>
<td>Breckon Hill</td>
<td>N</td>
<td>-</td>
<td>0.04, 0.09, 0.14 *</td>
</tr>
</tbody>
</table>

* - Monitor closed September 2007, 8 months data only

Breckon Hill is representative of relevant public exposure for 1,3-butadiene. Results show that the objective is readily met.

The national network monitor was closed in September 2007 as a result of rationalisation of the national hydrocarbon network, so historical results are shown here.

2.2.7 Other pollutants monitored

Breckon Hill has carbon monoxide monitoring as a regulated pollutant, and also measures ozone and PAH as unregulated pollutants.

Table 2.9 Results of Carbon Monoxide Automatic Monitoring: Comparison with 8-hour Running Mean Objective of 10 mg/m³, with no exceedances.

<table>
<thead>
<tr>
<th>Site ID</th>
<th>Location</th>
<th>Within AQMA?</th>
<th>Data Capture 2010 %</th>
<th>Maximum of 8 hour running mean concentrations (mg/m³)</th>
</tr>
</thead>
<tbody>
<tr>
<td>BH</td>
<td>Breckon Hill</td>
<td>N</td>
<td>84</td>
<td>1.3, 0.9, 1.5</td>
</tr>
</tbody>
</table>

Breckon Hill is representative of relevant public exposure for carbon monoxide. Concentrations are stable year on year at less than 20% of the objective level, so the objective is readily met.

Table 2.10 Results of Ozone Automatic Monitoring: Comparison with 8-hour Running Mean Target of 100 μg/m³, with a maximum of 10 day exceedances.

<table>
<thead>
<tr>
<th>Site ID</th>
<th>Location</th>
<th>Within AQMA?</th>
<th>Data Capture 2009 %</th>
<th>Number of Day Exceedances of 8 hour running mean target (100 μg/m³)</th>
</tr>
</thead>
<tbody>
<tr>
<td>BH</td>
<td>Breckon Hill</td>
<td>N</td>
<td>86</td>
<td>11, 1, 4</td>
</tr>
</tbody>
</table>
Ozone is not a regulated pollutant. The number of exceedances is normally a reflection of summer weather conditions, with the last three summers being generally poor weather. The higher number of 2008 day exceedances was due to a major ozone episode across the UK, which has been reported on by AEAT through the Air Quality Archive site. There were no such episodes in 2009 or 2010. Exceedance of this target objective is likely across much of Middlesbrough during good summer weather.

Table 2.11 Results of PAH digital sampler Monitoring: Comparison with Annual Mean Target of 0.25 ng/m³ (BAP), with no exceedances.

<table>
<thead>
<tr>
<th>Site ID</th>
<th>Location</th>
<th>Within AQMA?</th>
<th>Data Capture 2010 %</th>
<th>Annual mean concentrations (ng/m³)</th>
</tr>
</thead>
<tbody>
<tr>
<td>BH</td>
<td>Breckon Hill</td>
<td>N</td>
<td>99</td>
<td>1.09 0.39 0.44</td>
</tr>
</tbody>
</table>

PAH is not a regulated pollutant, but results are shown here because an exceedance of the target objective is likely. The most significant source of PAH is considered by the Environment Agency to be the coke ovens connected with the steel industry further along the Tees estuary. Breckon Hill is generally upwind of this source. This pollutant requires further investigation.

Lead is a regulated pollutant, but there has not been any monitoring within Middlesbrough area. However, lead levels were monitored as part of a heavy metal programme at three locations within the neighbouring Stockton-on-Tees Council area until 2007, where for the last ten years, lead concentrations were below the limit of detection. In addition, lead monitoring started in June 2008 within the Redcar & Cleveland Council area as part of a national heavy metal programme connected with steel manufacturing along the Tees estuary. Results (see section B of this report) confirm exceptionally low lead levels.

There are no significant source emissions within Middlesbrough, or within the Tees Valley, and there is no requirement for further monitoring.

Middlesbrough has examined the results from monitoring in the borough, and in neighbouring Council areas. Concentrations at areas of relevant public exposure are all below the regulated objectives; therefore there is no need to proceed to a Detailed Assessment.
3 New Local Developments

3.1 Road Traffic Sources
 There are no new roads, or significant road modifications in 2010.

3.2 Other Transport Sources
 There are no changes involving other transport sources in 2010.

3.3 Industrial Sources
 There were no new Part B Installations in 2010.

3.4 Commercial and Domestic Sources
 There are no significant new developments in 2010.

3.5 New Developments with Fugitive or Uncontrolled Sources
 There are no new developments with fugitive or uncontrolled sources in 2010.

Middlesbrough Council confirms that there are no new or newly identified local developments which may have an impact on air quality within the Local Authority area.
4 Local / Regional Air Quality Strategy

In the absence of air quality management areas, there is no formal air quality strategy, although this is kept under review by the Council and through the TVEPG.

5 Planning Applications

Planning applications in 2010 for developments with biomass boiler installations within the borough have required air quality assessments.

Air quality assessments for biomass plant have been received and accepted in 2010 for planning applications made in previous years.

6 Air Quality Planning Policies

Air quality within the Council area is generally good, and there is a commitment to maintain, and where possible, improve air quality.

7 Local Transport Plans / Strategies

The Council regularly reviews the local transport plan, and has a commitment to support measures that improve air quality where economically viable.

The Council is a partner in Tees Valley Unlimited (known as the Tees Valley Joint Strategy Unit prior to 1st April 2010).

8 Climate Change Strategies

The Council signed up to the Nottingham Declaration on Climate Change in 2002.
The Council is part of the Tees Valley Climate Change Partnership, which published a joint climate change strategy in 2007, and updated in 2010.
Middlesbrough Council has had a climate change community action plan since 2005 and was a Beacon Council for tackling climate change in 2008/09.
Middlesbrough Council is a signatory to the Environmental Union covenant of Mayors scheme to a minimum reduction of 21% in CO₂ by 2020 based on 2005 baseline.
Future carbon reduction measures will be proposed through a ‘One Planet Living’ Action Plan.
Middlesbrough Council has signed the 10/10 Carbon Reduction Campaign

9 Implementation of Action Plans

In the absence of air quality management areas, there are no formal action plans, although this topic is kept under review by the TVEPG.
10 Conclusions and Proposed Actions

10.1 Conclusions from New Monitoring Data

The main source of air pollution within Middlesbrough continues to be road traffic, with nitrogen dioxide and particulate PM10 the important pollutants. Three continuous monitors are strategically placed at worst case locations to monitor these pollutants, with Breckon Hill AURN station also well placed to monitor potential air pollutants from the industrial areas in neighbouring Council areas to the East and North.

All monitoring results clearly show that concentrations of regulated air pollutants continue to meet air quality objectives at these locations, and that this will be the case across the entire Middlesbrough Council area.

It is noted that monitoring in the neighbouring Tees Valley Councils (reference 1 attached) supports the Middlesbrough conclusions.

10.2 Conclusions from Assessment of Sources

There have been no significant new developments that will have any adverse impact on Middlesbrough air quality, either within the Council area, or nearby within neighbouring Council areas.

The Middlehaven area of Middlesbrough, around the old port facilities, has been remediated for new commercial and housing development, but these developments are unlikely to be in place for some years, and will meet environmental planning requirements, including air quality. The main A66 trunk route that runs through a transport corridor has been upgraded from two to three lanes, with new access to the Riverside area, but this will reduce air pollution by removing existing congestion points.

There are no new industrial installations within Middlesbrough, or neighbouring Council areas that will impact on air quality.

10.3 Other Conclusions

Other non-regulated pollutants that are included, or are likely to be included in the UK air quality strategy, have been given full consideration. The ozone objective is likely to be exceeded in many parts of the Council area during periods of hot sunny summer weather. PAHs need further assessment.

10.4 Proposed Actions

This Progress Report for Middlesbrough has not identified any areas of concern for regulated pollutants, and there is no need to proceed to any detailed assessment. No additional air quality monitoring is required, or changes to the existing monitoring, which are all at strategic locations.
Middlesbrough - England

Middlesbrough Council will continue to work closely with the other four Tees Valley Councils on air quality matters through the Tees Valley Environmental Protection Group.

The group are considering an update of the Traffic Pollution study, carried out in 2005, using the new DMRB model once it is published.

A new report was published in January 2010 (reference 3) providing a breakdown of all continuous monitoring results within the Tees Valley into the relevant air quality banding categories. This report shows that most monitoring results are in the low category, with only particulate PM10 (of the regulated pollutants) having some transition into the moderate category. Of the non-regulated pollutants, ozone is a potential problem area, and polycyclic aromatic hydrocarbons (PAHs) are expected to need further investigation.

The next submission to Defra will be an Updating and Screening report for 2012 in May 2012, based on 2011 monitoring data.

11 References

1. Annual Air Quality Report for the Tees Valley
 Published by the Tees Valley Environmental Protection Group, May 2011

2. Industrial Emission Inventory for the Tees Valley
 Published by the Tees Valley Environmental Protection Group, February 2010

3. Air Quality Banding Analysis for the Tees Valley
 Published by the Tees Valley Environmental Protection Group, March 2010

4. Tees Valley Traffic Pollution Study 2005
 Published by the Tees Valley Environmental Protection Group, July 2005
Appendices
Appendix A: QA:QC Data

Diffusion Tube Bias Adjustment Factors

Middlesbrough Council does not use nitrogen dioxide diffusion tubes.

Factor from Local Co-location Studies (if available)

Not applicable

Discussion of Choice of Factor to Use

Not applicable

PM Monitoring Adjustment

All measurements for PM$_{10}$ at the Local stations are unmodified TEOM based. Results since 2008 have been adjusted using the Volatile Correction Model (vcm). The vcm method was not available for earlier years.

Short-term to Long-term Data adjustment

All monitoring data has been full year, with no adjustment required.

QA/QC of automatic monitoring

The Breckon Hill AURN station is operated under a comprehensive service contract with Enviro Technology Services Ltd, with QA / QC carried out by AEAT. Operators of the site have received supplier training.

The two Middlesbrough fixed continuous local monitoring stations (both NO$_x$ and PM$_{10}$), are modern installations, operated under a comprehensive service contract with the supplier, in both cases Casella Measurement Ltd. Operators of the site have received supplier training.

The Council is committed to achieving accuracy, precision, data capture, traceability and long term consistency to ensure that data is representative of ambient air quality. In common with other Tees Valley Councils, Middlesbrough has a documented quality assurance and control programme, which includes an established schedule of regular site calibrations, validation of data, and documentation of all procedures. Details are summarised as follows:
Middlesbrough- England

Calibration daily ‘automatic’ calibration with frequent (usually fortnightly) manual checks.
Calibration gas obtained from approved gas standard suppliers.

Equipment comprehensive service agreement with the supplier.

Data capture site operators are experienced and trained personnel, monitoring data capture on a daily basis where possible to ensure that faults are detected and corrected quickly.

Ratification data is screened, where possible on a daily basis, to check for unusual measurements. Suspicious data is investigated fully, and if found to be faulty, is deleted from the records. Particular attention is paid to possible environmental changes in the vicinity of the analyser.
Data is recorded monthly and compared with earlier results.
Data is collated quarterly with that from other monitors within the Tees Valley, including AURN stations, as a further check on accuracy.

All data is published annually (reference 1) by the Tees Valley Environmental Protection Group.

QA/QC of diffusion tube monitoring

Middlesbrough Council does not use nitrogen dioxide diffusion tubes.
Appendix B: Monitoring Trend Graphs

B1 Nitrogen Dioxide

NITROGEN DIOXIDE

MIDDLESBROUGH (Breckon Hill) AURN Station
(urban-industrial site classification)

MIDDLESBROUGH (MacMillan College) Local Station
(urban background site)

MIDDLESBROUGH (Elm Street) Local Station
(urban roadside site)
Middlesbrough- England

B2 Particulate PM$_{10}$

PARTICULATE PM$_{10}$

MIDDLESBROUGH (Breckon Hill) AURN Station
(urban-industrial site classification)

2009 and 2010 data is from a new TEOM FDMS monitor

MIDDLESBROUGH (MacMillan College) Local Station
(urban background site)

MIDDLESBROUGH (Elm Street) Local Station
(urban roadside site)

Progress Report
June 2011
Middlesbrough - England

B3 Sulphur Dioxide

MIDDLESBROUGH (Breckon Hill) AURN Station
(urban-industrial site classification)

<table>
<thead>
<tr>
<th>Year</th>
<th>15 minute 99.9th percentile</th>
<th>1 hour 99.7th percentile</th>
</tr>
</thead>
<tbody>
<tr>
<td>1996</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>1997</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>1998</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>1999</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>2000</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>2001</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>2002</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>2003</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>2004</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>2005</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>2006</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>2007</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>2008</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>2009</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>2010</td>
<td>100</td>
<td>100</td>
</tr>
</tbody>
</table>

B4 Carbon Monoxide

MIDDLESBROUGH (Breckon Hill) AURN Station
(urban-industrial site classification)

<table>
<thead>
<tr>
<th>Year</th>
<th>8 hour running mean maximum</th>
</tr>
</thead>
<tbody>
<tr>
<td>1996</td>
<td>10</td>
</tr>
<tr>
<td>1997</td>
<td>10</td>
</tr>
<tr>
<td>1998</td>
<td>10</td>
</tr>
<tr>
<td>1999</td>
<td>10</td>
</tr>
<tr>
<td>2000</td>
<td>10</td>
</tr>
<tr>
<td>2001</td>
<td>10</td>
</tr>
<tr>
<td>2002</td>
<td>10</td>
</tr>
<tr>
<td>2003</td>
<td>10</td>
</tr>
<tr>
<td>2004</td>
<td>10</td>
</tr>
<tr>
<td>2005</td>
<td>10</td>
</tr>
<tr>
<td>2006</td>
<td>10</td>
</tr>
<tr>
<td>2007</td>
<td>10</td>
</tr>
<tr>
<td>2008</td>
<td>10</td>
</tr>
<tr>
<td>2009</td>
<td>10</td>
</tr>
<tr>
<td>2010</td>
<td>10</td>
</tr>
</tbody>
</table>